|
|
|
|
@ -480,6 +480,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
|
|
|
|
|
|
|
|
|
|
with devices.autocast():
|
|
|
|
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
|
|
|
|
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
|
|
|
|
c = shared.sd_model.cond_stage_model(batch.cond_text)
|
|
|
|
|
|
|
|
|
|
if is_training_inpainting_model:
|
|
|
|
|
@ -490,7 +491,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
|
|
|
|
|
else:
|
|
|
|
|
cond = c
|
|
|
|
|
|
|
|
|
|
loss = shared.sd_model(x, cond)[0] / gradient_step
|
|
|
|
|
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
|
|
|
|
|
del x
|
|
|
|
|
|
|
|
|
|
_loss_step += loss.item()
|
|
|
|
|
|