|
|
|
@ -640,13 +640,14 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|
|
|
|
|
|
|
|
|
|
|
with devices.autocast():
|
|
|
|
with devices.autocast():
|
|
|
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
|
|
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
|
|
|
|
|
|
|
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
|
|
|
if tag_drop_out != 0 or shuffle_tags:
|
|
|
|
if tag_drop_out != 0 or shuffle_tags:
|
|
|
|
shared.sd_model.cond_stage_model.to(devices.device)
|
|
|
|
shared.sd_model.cond_stage_model.to(devices.device)
|
|
|
|
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
|
|
|
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
|
|
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
|
|
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
|
|
|
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
|
|
|
loss = shared.sd_model(x, c)[0] / gradient_step
|
|
|
|
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
|
|
|
|
del x
|
|
|
|
del x
|
|
|
|
del c
|
|
|
|
del c
|
|
|
|
|
|
|
|
|
|
|
|
|