|
|
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import tqdm
|
|
|
|
|
|
|
|
|
|
from modules import processing, shared, images, devices
|
|
|
|
|
from modules.shared import opts
|
|
|
|
|
@ -149,19 +150,35 @@ def run_modelmerger(modelname_0, modelname_1, interp_method, interp_amount):
|
|
|
|
|
alpha = alpha * alpha * (3 - (2 * alpha))
|
|
|
|
|
return theta0 + ((theta1 - theta0) * alpha)
|
|
|
|
|
|
|
|
|
|
model_0 = torch.load('models/' + modelname_0 + '.ckpt')
|
|
|
|
|
model_1 = torch.load('models/' + modelname_1 + '.ckpt')
|
|
|
|
|
if os.path.exists(modelname_0):
|
|
|
|
|
model0_filename = modelname_0
|
|
|
|
|
modelname_0 = os.path.splitext(os.path.basename(modelname_0))[0]
|
|
|
|
|
else:
|
|
|
|
|
model0_filename = 'models/' + modelname_0 + '.ckpt'
|
|
|
|
|
|
|
|
|
|
if os.path.exists(modelname_1):
|
|
|
|
|
model1_filename = modelname_1
|
|
|
|
|
modelname_1 = os.path.splitext(os.path.basename(modelname_1))[0]
|
|
|
|
|
else:
|
|
|
|
|
model1_filename = 'models/' + modelname_1 + '.ckpt'
|
|
|
|
|
|
|
|
|
|
print(f"Loading {model0_filename}...")
|
|
|
|
|
model_0 = torch.load(model0_filename, map_location='cpu')
|
|
|
|
|
|
|
|
|
|
print(f"Loading {model1_filename}...")
|
|
|
|
|
model_1 = torch.load(model1_filename, map_location='cpu')
|
|
|
|
|
|
|
|
|
|
theta_0 = model_0['state_dict']
|
|
|
|
|
theta_1 = model_1['state_dict']
|
|
|
|
|
theta_func = weighted_sum
|
|
|
|
|
|
|
|
|
|
if interp_method == "Weighted Sum":
|
|
|
|
|
theta_func = weighted_sum
|
|
|
|
|
if interp_method == "Sigmoid":
|
|
|
|
|
theta_func = sigmoid
|
|
|
|
|
theta_funcs = {
|
|
|
|
|
"Weighted Sum": weighted_sum,
|
|
|
|
|
"Sigmoid": sigmoid,
|
|
|
|
|
}
|
|
|
|
|
theta_func = theta_funcs[interp_method]
|
|
|
|
|
|
|
|
|
|
for key in theta_0.keys():
|
|
|
|
|
print(f"Merging...")
|
|
|
|
|
for key in tqdm.tqdm(theta_0.keys()):
|
|
|
|
|
if 'model' in key and key in theta_1:
|
|
|
|
|
theta_0[key] = theta_func(theta_0[key], theta_1[key], interp_amount)
|
|
|
|
|
|
|
|
|
|
@ -169,8 +186,9 @@ def run_modelmerger(modelname_0, modelname_1, interp_method, interp_amount):
|
|
|
|
|
if 'model' in key and key not in theta_0:
|
|
|
|
|
theta_0[key] = theta_1[key]
|
|
|
|
|
|
|
|
|
|
output_modelname = 'models/' + modelname_0 + '-' + modelname_1 + '-merged.ckpt';
|
|
|
|
|
|
|
|
|
|
output_modelname = 'models/' + modelname_0 + '-' + modelname_1 + '-merged.ckpt'
|
|
|
|
|
print(f"Saving to {output_modelname}...")
|
|
|
|
|
torch.save(model_0, output_modelname)
|
|
|
|
|
|
|
|
|
|
return "<p>Model saved to " + output_modelname + "</p>"
|
|
|
|
|
print(f"Checkpoint saved.")
|
|
|
|
|
return "Checkpoint saved to " + output_modelname
|
|
|
|
|
|