|
|
|
|
@ -201,19 +201,30 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
|
|
|
|
**values,
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
def tensorboard_setup(log_directory):
|
|
|
|
|
os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
|
|
|
|
|
return SummaryWriter(
|
|
|
|
|
log_dir=os.path.join(log_directory, "tensorboard"),
|
|
|
|
|
flush_secs=shared.opts.training_tensorboard_flush_every)
|
|
|
|
|
|
|
|
|
|
def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num):
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step)
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step)
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step)
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)
|
|
|
|
|
|
|
|
|
|
def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
|
|
|
|
|
if shared.opts.training_enable_tensorboard:
|
|
|
|
|
tensorboard_writer.add_scalar(tag=tag,
|
|
|
|
|
scalar_value=value, global_step=step)
|
|
|
|
|
tensorboard_writer.add_scalar(tag=tag,
|
|
|
|
|
scalar_value=value, global_step=step)
|
|
|
|
|
|
|
|
|
|
def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
|
|
|
|
|
if shared.opts.training_enable_tensorboard:
|
|
|
|
|
# Convert a pil image to a torch tensor
|
|
|
|
|
img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
|
|
|
|
|
img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], len(pil_image.getbands()))
|
|
|
|
|
img_tensor = img_tensor.permute((2, 0, 1))
|
|
|
|
|
# Convert a pil image to a torch tensor
|
|
|
|
|
img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
|
|
|
|
|
img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
|
|
|
|
|
len(pil_image.getbands()))
|
|
|
|
|
img_tensor = img_tensor.permute((2, 0, 1))
|
|
|
|
|
|
|
|
|
|
tensorboard_writer.add_image(tag, img_tensor, global_step=step)
|
|
|
|
|
tensorboard_writer.add_image(tag, img_tensor, global_step=step)
|
|
|
|
|
|
|
|
|
|
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
|
|
|
|
assert embedding_name, 'embedding not selected'
|
|
|
|
|
@ -268,10 +279,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|
|
|
|
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
|
|
|
|
|
|
|
|
|
if shared.opts.training_enable_tensorboard:
|
|
|
|
|
os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
|
|
|
|
|
tensorboard_writer = SummaryWriter(
|
|
|
|
|
log_dir=os.path.join(log_directory, "tensorboard"),
|
|
|
|
|
flush_secs=shared.opts.training_tensorboard_flush_every)
|
|
|
|
|
tensorboard_writer = tensorboard_setup(log_directory)
|
|
|
|
|
|
|
|
|
|
pbar = tqdm.tqdm(enumerate(ds), total=steps-initial_step)
|
|
|
|
|
for i, entries in pbar:
|
|
|
|
|
@ -308,10 +316,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|
|
|
|
embedding_yet_to_be_embedded = True
|
|
|
|
|
|
|
|
|
|
if shared.opts.training_enable_tensorboard:
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, "Loss/train", losses.mean(), embedding.step)
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", losses.mean(), epoch_step)
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", scheduler.learn_rate, embedding.step)
|
|
|
|
|
tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", scheduler.learn_rate, epoch_step)
|
|
|
|
|
tensorboard_add(tensorboard_writer, loss=losses.mean(), global_step=embedding.step,
|
|
|
|
|
step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
|
|
|
|
|
|
|
|
|
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
|
|
|
|
|
"loss": f"{losses.mean():.7f}",
|
|
|
|
|
@ -377,7 +383,10 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|
|
|
|
embedding_yet_to_be_embedded = False
|
|
|
|
|
|
|
|
|
|
image.save(last_saved_image)
|
|
|
|
|
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)
|
|
|
|
|
|
|
|
|
|
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
|
|
|
|
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}",
|
|
|
|
|
image, embedding.step)
|
|
|
|
|
|
|
|
|
|
last_saved_image += f", prompt: {preview_text}"
|
|
|
|
|
|
|
|
|
|
|