|
|
|
|
@ -6,7 +6,7 @@ from PIL import Image
|
|
|
|
|
import torch
|
|
|
|
|
import tqdm
|
|
|
|
|
|
|
|
|
|
from modules import processing, shared, images, devices
|
|
|
|
|
from modules import processing, shared, images, devices, sd_models
|
|
|
|
|
from modules.shared import opts
|
|
|
|
|
import modules.gfpgan_model
|
|
|
|
|
from modules.ui import plaintext_to_html
|
|
|
|
|
@ -156,17 +156,8 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
|
|
|
|
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
|
|
|
|
|
return theta0 + ((theta1 - theta0) * alpha)
|
|
|
|
|
|
|
|
|
|
if os.path.exists(primary_model_name):
|
|
|
|
|
primary_model_filename = primary_model_name
|
|
|
|
|
primary_model_name = os.path.splitext(os.path.basename(primary_model_name))[0]
|
|
|
|
|
else:
|
|
|
|
|
primary_model_filename = 'models/' + primary_model_name + '.ckpt'
|
|
|
|
|
|
|
|
|
|
if os.path.exists(secondary_model_name):
|
|
|
|
|
secondary_model_filename = secondary_model_name
|
|
|
|
|
secondary_model_name = os.path.splitext(os.path.basename(secondary_model_name))[0]
|
|
|
|
|
else:
|
|
|
|
|
secondary_model_filename = 'models/' + secondary_model_name + '.ckpt'
|
|
|
|
|
primary_model_filename = sd_models.checkpoints_list[primary_model_name].filename
|
|
|
|
|
secondary_model_filename = sd_models.checkpoints_list[secondary_model_name].filename
|
|
|
|
|
|
|
|
|
|
print(f"Loading {primary_model_filename}...")
|
|
|
|
|
primary_model = torch.load(primary_model_filename, map_location='cpu')
|
|
|
|
|
@ -180,7 +171,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
|
|
|
|
theta_funcs = {
|
|
|
|
|
"Weighted Sum": weighted_sum,
|
|
|
|
|
"Sigmoid": sigmoid,
|
|
|
|
|
"Inverse Sigmoid": inv_sigmoid
|
|
|
|
|
"Inverse Sigmoid": inv_sigmoid,
|
|
|
|
|
}
|
|
|
|
|
theta_func = theta_funcs[interp_method]
|
|
|
|
|
|
|
|
|
|
@ -193,9 +184,11 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
|
|
|
|
if 'model' in key and key not in theta_0:
|
|
|
|
|
theta_0[key] = theta_1[key]
|
|
|
|
|
|
|
|
|
|
output_modelname = 'models/' + primary_model_name + '_' + str(round(interp_amount,2)) + '-' + secondary_model_name + '_' + str(round((float(1.0) - interp_amount),2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
|
|
|
|
filename = primary_model_name + '_' + str(round(interp_amount,2)) + '-' + secondary_model_name + '_' + str(round((float(1.0) - interp_amount),2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
|
|
|
|
output_modelname = os.path.join(shared.cmd_opts.ckpt_dir, filename)
|
|
|
|
|
|
|
|
|
|
print(f"Saving to {output_modelname}...")
|
|
|
|
|
torch.save(primary_model, output_modelname)
|
|
|
|
|
|
|
|
|
|
print(f"Checkpoint saved.")
|
|
|
|
|
return "Checkpoint saved to " + output_modelname
|
|
|
|
|
return "Checkpoint saved to " + output_modelname
|
|
|
|
|
|