|
|
|
@ -847,7 +847,6 @@ class VanillaStableDiffusionSampler:
|
|
|
|
def __init__(self, constructor):
|
|
|
|
def __init__(self, constructor):
|
|
|
|
self.sampler = constructor(sd_model)
|
|
|
|
self.sampler = constructor(sd_model)
|
|
|
|
self.orig_p_sample_ddim = self.sampler.p_sample_ddim
|
|
|
|
self.orig_p_sample_ddim = self.sampler.p_sample_ddim
|
|
|
|
self.sampler.p_sample_ddim = lambda x_dec, cond, ts, *args, **kwargs: p_sample_ddim_hook(self, x_dec, cond, ts, *args, **kwargs)
|
|
|
|
|
|
|
|
self.mask = None
|
|
|
|
self.mask = None
|
|
|
|
self.nmask = None
|
|
|
|
self.nmask = None
|
|
|
|
self.init_latent = None
|
|
|
|
self.init_latent = None
|
|
|
|
@ -855,9 +854,15 @@ class VanillaStableDiffusionSampler:
|
|
|
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
|
|
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
|
|
|
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
|
|
|
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
|
|
|
|
|
|
|
|
|
|
|
self.sampler.make_schedule(ddim_num_steps=p.steps, ddim_eta=0.0, verbose=False)
|
|
|
|
# existing code fail with cetin step counts, like 9
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
self.sampler.make_schedule(ddim_num_steps=p.steps, verbose=False)
|
|
|
|
|
|
|
|
except Exception:
|
|
|
|
|
|
|
|
self.sampler.make_schedule(ddim_num_steps=p.steps+1, verbose=False)
|
|
|
|
|
|
|
|
|
|
|
|
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(device), noise=noise)
|
|
|
|
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(device), noise=noise)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.sampler.p_sample_ddim = lambda x_dec, cond, ts, *args, **kwargs: p_sample_ddim_hook(self, x_dec, cond, ts, *args, **kwargs)
|
|
|
|
self.mask = p.mask
|
|
|
|
self.mask = p.mask
|
|
|
|
self.nmask = p.nmask
|
|
|
|
self.nmask = p.nmask
|
|
|
|
self.init_latent = p.init_latent
|
|
|
|
self.init_latent = p.init_latent
|
|
|
|
|