|
|
|
|
@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module):
|
|
|
|
|
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
|
|
|
|
# if skip_first_layer because first parameters potentially contain negative values
|
|
|
|
|
# if i < 1: continue
|
|
|
|
|
if add_layer_norm:
|
|
|
|
|
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
|
|
|
|
if activation_func in HypernetworkModule.activation_dict:
|
|
|
|
|
linears.append(HypernetworkModule.activation_dict[activation_func]())
|
|
|
|
|
else:
|
|
|
|
|
print("Invalid key {} encountered as activation function!".format(activation_func))
|
|
|
|
|
# if use_dropout:
|
|
|
|
|
# linears.append(torch.nn.Dropout(p=0.3))
|
|
|
|
|
if add_layer_norm:
|
|
|
|
|
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
|
|
|
|
|
|
|
|
|
self.linear = torch.nn.Sequential(*linears)
|
|
|
|
|
|
|
|
|
|
@ -115,11 +115,24 @@ class Hypernetwork:
|
|
|
|
|
|
|
|
|
|
for k, layers in self.layers.items():
|
|
|
|
|
for layer in layers:
|
|
|
|
|
layer.train()
|
|
|
|
|
res += layer.trainables()
|
|
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
def eval(self):
|
|
|
|
|
for k, layers in self.layers.items():
|
|
|
|
|
for layer in layers:
|
|
|
|
|
layer.eval()
|
|
|
|
|
for items in self.weights():
|
|
|
|
|
items.requires_grad = False
|
|
|
|
|
|
|
|
|
|
def train(self):
|
|
|
|
|
for k, layers in self.layers.items():
|
|
|
|
|
for layer in layers:
|
|
|
|
|
layer.train()
|
|
|
|
|
for items in self.weights():
|
|
|
|
|
items.requires_grad = True
|
|
|
|
|
|
|
|
|
|
def save(self, filename):
|
|
|
|
|
state_dict = {}
|
|
|
|
|
|
|
|
|
|
@ -290,10 +303,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|
|
|
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
|
|
|
|
|
|
|
|
|
hypernetwork = shared.loaded_hypernetwork
|
|
|
|
|
weights = hypernetwork.weights()
|
|
|
|
|
for weight in weights:
|
|
|
|
|
weight.requires_grad = True
|
|
|
|
|
|
|
|
|
|
losses = torch.zeros((32,))
|
|
|
|
|
|
|
|
|
|
last_saved_file = "<none>"
|
|
|
|
|
@ -304,10 +313,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|
|
|
|
return hypernetwork, filename
|
|
|
|
|
|
|
|
|
|
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
|
|
|
|
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
|
|
|
|
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
|
|
|
|
optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate)
|
|
|
|
|
|
|
|
|
|
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
|
|
|
|
hypernetwork.train()
|
|
|
|
|
for i, entries in pbar:
|
|
|
|
|
hypernetwork.step = i + ititial_step
|
|
|
|
|
|
|
|
|
|
@ -328,8 +337,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|
|
|
|
|
|
|
|
|
losses[hypernetwork.step % losses.shape[0]] = loss.item()
|
|
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
loss.backward()
|
|
|
|
|
del loss
|
|
|
|
|
optimizer.step()
|
|
|
|
|
mean_loss = losses.mean()
|
|
|
|
|
if torch.isnan(mean_loss):
|
|
|
|
|
@ -346,9 +356,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
|
|
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
hypernetwork.eval()
|
|
|
|
|
shared.sd_model.cond_stage_model.to(devices.device)
|
|
|
|
|
shared.sd_model.first_stage_model.to(devices.device)
|
|
|
|
|
|
|
|
|
|
@ -385,6 +396,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|
|
|
|
image.save(last_saved_image)
|
|
|
|
|
last_saved_image += f", prompt: {preview_text}"
|
|
|
|
|
|
|
|
|
|
hypernetwork.train()
|
|
|
|
|
|
|
|
|
|
shared.state.job_no = hypernetwork.step
|
|
|
|
|
|
|
|
|
|
shared.state.textinfo = f"""
|
|
|
|
|
|