You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

100 lines
3.0 KiB
Python

import os
import re
import torch
from PIL import Image
import numpy as np
from modules import modelloader, paths, deepbooru_model, devices, images, shared
re_special = re.compile(r'([\\()])')
class DeepDanbooru:
def __init__(self):
self.model = None
def load(self):
if self.model is not None:
return
files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
ext_filter=[".pt"],
download_name='model-resnet_custom_v3.pt',
)
self.model = deepbooru_model.DeepDanbooruModel()
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
self.model.eval()
self.model.to(devices.cpu, devices.dtype)
def start(self):
self.load()
self.model.to(devices.device)
def stop(self):
if not shared.opts.interrogate_keep_models_in_memory:
self.model.to(devices.cpu)
devices.torch_gc()
def tag(self, pil_image):
self.start()
res = self.tag_multi(pil_image)
self.stop()
return res
def tag_multi(self, pil_image, force_disable_ranks=False):
threshold = shared.opts.interrogate_deepbooru_score_threshold
use_spaces = shared.opts.deepbooru_use_spaces
use_escape = shared.opts.deepbooru_escape
alpha_sort = shared.opts.deepbooru_sort_alpha
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
with torch.no_grad(), devices.autocast():
x = torch.from_numpy(a).to(devices.device)
y = self.model(x)[0].detach().cpu().numpy()
probability_dict = {}
for tag, probability in zip(self.model.tags, y):
if probability < threshold:
continue
if tag.startswith("rating:"):
continue
probability_dict[tag] = probability
if alpha_sort:
tags = sorted(probability_dict)
else:
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
res = []
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
for tag in [x for x in tags if x not in filtertags]:
probability = probability_dict[tag]
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{probability:.3f})"
res.append(tag_outformat)
return ", ".join(res)
model = DeepDanbooru()