You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

96 lines
2.7 KiB
Python

import os
import sys
import traceback
from glob import glob
from modules import shared, devices
from modules.shared import cmd_opts
from modules.paths import script_path
import modules.face_restoration
def gfpgan_model_path():
from modules.shared import cmd_opts
filemask = 'GFPGAN*.pth'
if cmd_opts.gfpgan_model is not None:
return cmd_opts.gfpgan_model
places = [script_path, '.', os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models')]
filename = None
for place in places:
filename = next(iter(glob(os.path.join(place, filemask))), None)
if filename is not None:
break
return filename
loaded_gfpgan_model = None
def gfpgan():
global loaded_gfpgan_model
if loaded_gfpgan_model is not None:
loaded_gfpgan_model.gfpgan.to(shared.device)
return loaded_gfpgan_model
if gfpgan_constructor is None:
return None
model = gfpgan_constructor(model_path=gfpgan_model_path() or 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
model.gfpgan.to(shared.device)
loaded_gfpgan_model = model
return model
def gfpgan_fix_faces(np_image):
model = gfpgan()
np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
if shared.opts.face_restoration_unload:
model.gfpgan.to(devices.cpu)
return np_image
have_gfpgan = False
gfpgan_constructor = None
def setup_gfpgan():
try:
gfpgan_model_path()
if os.path.exists(cmd_opts.gfpgan_dir):
sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir))
from gfpgan import GFPGANer
global have_gfpgan
have_gfpgan = True
global gfpgan_constructor
gfpgan_constructor = GFPGANer
class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration):
def name(self):
return "GFPGAN"
def restore(self, np_image):
np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = gfpgan().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
return np_image
shared.face_restorers.append(FaceRestorerGFPGAN())
except Exception:
print("Error setting up GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)