You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

79 lines
2.5 KiB
Python

import numpy as np
from tqdm import trange
import modules.scripts as scripts
import gradio as gr
from modules import processing, shared, sd_samplers, images
from modules.processing import Processed
from modules.sd_samplers import samplers
from modules.shared import opts, cmd_opts, state
class Script(scripts.Script):
def title(self):
return "Loopback"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4)
denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1)
return [loops, denoising_strength_change_factor]
def run(self, p, loops, denoising_strength_change_factor):
processing.fix_seed(p)
batch_count = p.n_iter
p.extra_generation_params = {
"Denoising strength change factor": denoising_strength_change_factor,
}
p.batch_size = 1
p.n_iter = 1
output_images, info = None, None
initial_seed = None
initial_info = None
grids = []
all_images = []
state.job_count = loops * batch_count
for n in range(batch_count):
history = []
for i in range(loops):
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
processed = processing.process_images(p)
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
init_img = processed.images[0]
p.init_images = [init_img]
p.seed = processed.seed + 1
p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
history.append(processed.images[0])
grid = images.image_grid(history, rows=1)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
grids.append(grid)
all_images += history
if opts.return_grid:
all_images = grids + all_images
processed = Processed(p, all_images, initial_seed, initial_info)
return processed