You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

168 lines
6.0 KiB
Python

import os
import sys
import traceback
import numpy as np
import torch
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
import modules.esrgam_model_arch as arch
import modules.images
from modules import shared
from modules import shared, modelloader
from modules.devices import has_mps
from modules.paths import models_path
from modules.shared import opts
model_dir = "ESRGAN"
model_path = os.path.join(models_path, model_dir)
model_url = "https://drive.google.com/u/0/uc?id=1TPrz5QKd8DHHt1k8SRtm6tMiPjz_Qene&export=download"
model_name = "ESRGAN_x4"
def load_model(path: str, name: str):
global model_path
global model_url
global model_dir
global model_name
if "http" in path:
filename = load_file_from_url(url=model_url, model_dir=model_path, file_name="%s.pth" % model_name, progress=True)
else:
filename = path
if not os.path.exists(filename) or filename is None:
print("Unable to load %s from %s" % (model_dir, filename))
return None
print("Loading %s from %s" % (model_dir, filename))
# this code is adapted from https://github.com/xinntao/ESRGAN
pretrained_net = torch.load(filename, map_location='cpu' if has_mps else None)
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
if 'conv_first.weight' in pretrained_net:
crt_model.load_state_dict(pretrained_net)
return crt_model
if 'model.0.weight' not in pretrained_net:
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"]
if is_realesrgan:
raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.")
else:
raise Exception("The file is not a ESRGAN model.")
crt_net = crt_model.state_dict()
load_net_clean = {}
for k, v in pretrained_net.items():
if k.startswith('module.'):
load_net_clean[k[7:]] = v
else:
load_net_clean[k] = v
pretrained_net = load_net_clean
tbd = []
for k, v in crt_net.items():
tbd.append(k)
# directly copy
for k, v in crt_net.items():
if k in pretrained_net and pretrained_net[k].size() == v.size():
crt_net[k] = pretrained_net[k]
tbd.remove(k)
crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
for k in tbd.copy():
if 'RDB' in k:
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
if '.weight' in k:
ori_k = ori_k.replace('.weight', '.0.weight')
elif '.bias' in k:
ori_k = ori_k.replace('.bias', '.0.bias')
crt_net[k] = pretrained_net[ori_k]
tbd.remove(k)
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
crt_model.load_state_dict(crt_net)
crt_model.eval()
return crt_model
def upscale_without_tiling(model, img):
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(shared.device)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255. * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
return Image.fromarray(output, 'RGB')
def esrgan_upscale(model, img):
if opts.ESRGAN_tile == 0:
return upscale_without_tiling(model, img)
grid = modules.images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
newtiles = []
scale_factor = 1
for y, h, row in grid.tiles:
newrow = []
for tiledata in row:
x, w, tile = tiledata
output = upscale_without_tiling(model, tile)
scale_factor = output.width // tile.width
newrow.append([x * scale_factor, w * scale_factor, output])
newtiles.append([y * scale_factor, h * scale_factor, newrow])
newgrid = modules.images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
output = modules.images.combine_grid(newgrid)
return output
class UpscalerESRGAN(modules.images.Upscaler):
def __init__(self, filename, title):
self.name = title
self.filename = filename
def do_upscale(self, img):
model = load_model(self.filename, self.name)
if model is None:
return img
model.to(shared.device)
img = esrgan_upscale(model, img)
return img
def setup_model(dirname):
global model_path
global model_name
if not os.path.exists(model_path):
os.makedirs(model_path)
model_paths = modelloader.load_models(model_path, command_path=dirname, ext_filter=[".pt", ".pth"])
if len(model_paths) == 0:
modules.shared.sd_upscalers.append(UpscalerESRGAN(model_url, model_name))
for file in model_paths:
name = modelloader.friendly_name(file)
try:
modules.shared.sd_upscalers.append(UpscalerESRGAN(file, name))
except Exception:
print(f"Error loading ESRGAN model: {file}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)