You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

197 lines
7.3 KiB
Python

import math
import cv2
import numpy as np
from PIL import Image, ImageOps, ImageChops
from modules import devices
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
import modules.images as images
import modules.scripts
def img2img(prompt: str, negative_prompt: str, prompt_style: str, init_img, init_img_with_mask, init_mask, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, denoising_strength_change_factor: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, height: int, width: int, resize_mode: int, upscaler_index: str, upscale_overlap: int, inpaint_full_res: bool, inpainting_mask_invert: int, *args):
is_inpaint = mode == 1
is_loopback = mode == 2
is_upscale = mode == 3
if is_inpaint:
if mask_mode == 0:
image = init_img_with_mask['image']
mask = init_img_with_mask['mask']
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert('RGB')
else:
image = init_img
mask = init_mask
else:
image = init_img
mask = None
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
prompt=prompt,
negative_prompt=negative_prompt,
prompt_style=prompt_style,
seed=seed,
subseed=subseed,
subseed_strength=subseed_strength,
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
sampler_index=sampler_index,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
restore_faces=restore_faces,
tiling=tiling,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
inpainting_fill=inpainting_fill,
resize_mode=resize_mode,
denoising_strength=denoising_strength,
inpaint_full_res=inpaint_full_res,
inpainting_mask_invert=inpainting_mask_invert,
extra_generation_params={
"Denoising strength": denoising_strength,
"Denoising strength change factor": (denoising_strength_change_factor if is_loopback else None)
}
)
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
if is_loopback:
output_images, info = None, None
history = []
initial_seed = None
initial_info = None
state.job_count = n_iter
do_color_correction = False
try:
from skimage import exposure
do_color_correction = True
except:
print("Install scikit-image to perform color correction on loopback")
for i in range(n_iter):
if do_color_correction and i == 0:
correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB)
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
state.job = f"Batch {i + 1} out of {n_iter}"
processed = process_images(p)
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
init_img = processed.images[0]
if do_color_correction and correction_target is not None:
init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
cv2.cvtColor(
np.asarray(init_img),
cv2.COLOR_RGB2LAB
),
correction_target,
channel_axis=2
), cv2.COLOR_LAB2RGB).astype("uint8"))
p.init_images = [init_img]
p.seed = processed.seed + 1
p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
history.append(processed.images[0])
grid = images.image_grid(history, batch_size, rows=1)
images.save_image(grid, p.outpath_grids, "grid", initial_seed, prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename)
processed = Processed(p, history, initial_seed, initial_info)
elif is_upscale:
initial_info = None
processing.fix_seed(p)
seed = p.seed
upscaler = shared.sd_upscalers[upscaler_index]
img = upscaler.upscale(init_img, init_img.width * 2, init_img.height * 2)
devices.torch_gc()
grid = images.split_grid(img, tile_w=width, tile_h=height, overlap=upscale_overlap)
upscale_count = p.n_iter
p.n_iter = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
work = []
for y, h, row in grid.tiles:
for tiledata in row:
work.append(tiledata[2])
batch_count = math.ceil(len(work) / p.batch_size)
state.job_count = batch_count * upscale_count
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
result_images = []
for n in range(upscale_count):
start_seed = seed + n
p.seed = start_seed
work_results = []
for i in range(batch_count):
p.init_images = work[i*p.batch_size:(i+1)*p.batch_size]
state.job = f"Batch {i + 1} out of {state.job_count}"
processed = process_images(p)
if initial_info is None:
initial_info = processed.info
p.seed = processed.seed + 1
work_results += processed.images
image_index = 0
for y, h, row in grid.tiles:
for tiledata in row:
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
image_index += 1
combined_image = images.combine_grid(grid)
result_images.append(combined_image)
if opts.samples_save:
images.save_image(combined_image, p.outpath_samples, "", start_seed, prompt, opts.samples_format, info=initial_info)
processed = Processed(p, result_images, seed, initial_info)
else:
processed = modules.scripts.scripts_img2img.run(p, *args)
if processed is None:
processed = process_images(p)
shared.total_tqdm.clear()
return processed.images, processed.js(), plaintext_to_html(processed.info)