|
|
|
|
@ -309,7 +309,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|
|
|
|
|
|
|
|
|
with torch.autocast("cuda"):
|
|
|
|
|
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
|
|
|
|
|
c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
|
|
|
|
|
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
|
|
|
|
|
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
|
|
|
|
|
loss = shared.sd_model(x, c)[0]
|
|
|
|
|
del x
|
|
|
|
|
@ -331,7 +331,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|
|
|
|
|
|
|
|
|
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
|
|
|
|
|
"loss": f"{mean_loss:.7f}",
|
|
|
|
|
"learn_rate": f"{scheduler.learn_rate:.7f}"
|
|
|
|
|
"learn_rate": scheduler.learn_rate
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
|
|
|
|
|