|
|
|
|
@ -77,9 +77,9 @@ class CFGDenoiser(torch.nn.Module):
|
|
|
|
|
batch_size = len(conds_list)
|
|
|
|
|
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
|
|
|
|
|
|
|
|
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
|
|
|
|
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
|
|
|
|
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [image_cond])
|
|
|
|
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
|
|
|
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
|
|
|
|
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
|
|
|
|
|
|
|
|
|
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
|
|
|
|
|
cfg_denoiser_callback(denoiser_params)
|
|
|
|
|
@ -88,7 +88,7 @@ class CFGDenoiser(torch.nn.Module):
|
|
|
|
|
sigma_in = denoiser_params.sigma
|
|
|
|
|
|
|
|
|
|
if tensor.shape[1] == uncond.shape[1]:
|
|
|
|
|
cond_in = torch.cat([tensor, uncond, uncond])
|
|
|
|
|
cond_in = torch.cat([tensor, uncond])
|
|
|
|
|
|
|
|
|
|
if shared.batch_cond_uncond:
|
|
|
|
|
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
|
|
|
|
|
|