|
|
|
|
@ -43,10 +43,7 @@ def undo_optimizations():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_target_prompt_token_count(token_count):
|
|
|
|
|
if token_count < 75:
|
|
|
|
|
return 75
|
|
|
|
|
|
|
|
|
|
return math.ceil(token_count / 10) * 10
|
|
|
|
|
return math.ceil(max(token_count, 1) / 75) * 75
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class StableDiffusionModelHijack:
|
|
|
|
|
@ -127,7 +124,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|
|
|
|
self.token_mults[ident] = mult
|
|
|
|
|
|
|
|
|
|
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
|
|
|
|
id_start = self.wrapped.tokenizer.bos_token_id
|
|
|
|
|
id_end = self.wrapped.tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
if opts.enable_emphasis:
|
|
|
|
|
@ -154,7 +150,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|
|
|
|
i += 1
|
|
|
|
|
else:
|
|
|
|
|
emb_len = int(embedding.vec.shape[0])
|
|
|
|
|
fixes.append((len(remade_tokens), embedding))
|
|
|
|
|
iteration = len(remade_tokens) // 75
|
|
|
|
|
fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
|
|
|
|
|
remade_tokens += [0] * emb_len
|
|
|
|
|
multipliers += [weight] * emb_len
|
|
|
|
|
used_custom_terms.append((embedding.name, embedding.checksum()))
|
|
|
|
|
@ -162,10 +159,10 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|
|
|
|
|
|
|
|
|
token_count = len(remade_tokens)
|
|
|
|
|
prompt_target_length = get_target_prompt_token_count(token_count)
|
|
|
|
|
tokens_to_add = prompt_target_length - len(remade_tokens) + 1
|
|
|
|
|
tokens_to_add = prompt_target_length - len(remade_tokens)
|
|
|
|
|
|
|
|
|
|
remade_tokens = [id_start] + remade_tokens + [id_end] * tokens_to_add
|
|
|
|
|
multipliers = [1.0] + multipliers + [1.0] * tokens_to_add
|
|
|
|
|
remade_tokens = remade_tokens + [id_end] * tokens_to_add
|
|
|
|
|
multipliers = multipliers + [1.0] * tokens_to_add
|
|
|
|
|
|
|
|
|
|
return remade_tokens, fixes, multipliers, token_count
|
|
|
|
|
|
|
|
|
|
@ -260,29 +257,55 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|
|
|
|
hijack_fixes.append(fixes)
|
|
|
|
|
batch_multipliers.append(multipliers)
|
|
|
|
|
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, text):
|
|
|
|
|
|
|
|
|
|
if opts.use_old_emphasis_implementation:
|
|
|
|
|
use_old = opts.use_old_emphasis_implementation
|
|
|
|
|
if use_old:
|
|
|
|
|
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
|
|
|
|
|
else:
|
|
|
|
|
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
|
|
|
|
|
|
|
|
|
self.hijack.fixes = hijack_fixes
|
|
|
|
|
self.hijack.comments += hijack_comments
|
|
|
|
|
|
|
|
|
|
if len(used_custom_terms) > 0:
|
|
|
|
|
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
|
|
|
|
|
|
|
|
|
if use_old:
|
|
|
|
|
self.hijack.fixes = hijack_fixes
|
|
|
|
|
return self.process_tokens(remade_batch_tokens, batch_multipliers)
|
|
|
|
|
|
|
|
|
|
z = None
|
|
|
|
|
i = 0
|
|
|
|
|
while max(map(len, remade_batch_tokens)) != 0:
|
|
|
|
|
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
|
|
|
|
rem_multipliers = [x[75:] for x in batch_multipliers]
|
|
|
|
|
|
|
|
|
|
self.hijack.fixes = []
|
|
|
|
|
for unfiltered in hijack_fixes:
|
|
|
|
|
fixes = []
|
|
|
|
|
for fix in unfiltered:
|
|
|
|
|
if fix[0] == i:
|
|
|
|
|
fixes.append(fix[1])
|
|
|
|
|
self.hijack.fixes.append(fixes)
|
|
|
|
|
|
|
|
|
|
z1 = self.process_tokens([x[:75] for x in remade_batch_tokens], [x[:75] for x in batch_multipliers])
|
|
|
|
|
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
|
|
|
|
|
|
|
|
|
remade_batch_tokens = rem_tokens
|
|
|
|
|
batch_multipliers = rem_multipliers
|
|
|
|
|
i += 1
|
|
|
|
|
|
|
|
|
|
return z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
|
|
|
|
if not opts.use_old_emphasis_implementation:
|
|
|
|
|
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
|
|
|
|
|
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
|
|
|
|
|
|
|
|
|
|
tokens = torch.asarray(remade_batch_tokens).to(device)
|
|
|
|
|
outputs = self.wrapped.transformer(input_ids=tokens)
|
|
|
|
|
|
|
|
|
|
target_token_count = get_target_prompt_token_count(token_count) + 2
|
|
|
|
|
|
|
|
|
|
position_ids_array = [min(x, 75) for x in range(target_token_count-1)] + [76]
|
|
|
|
|
position_ids = torch.asarray(position_ids_array, device=devices.device).expand((1, -1))
|
|
|
|
|
|
|
|
|
|
remade_batch_tokens_of_same_length = [x + [self.wrapped.tokenizer.eos_token_id] * (target_token_count - len(x)) for x in remade_batch_tokens]
|
|
|
|
|
tokens = torch.asarray(remade_batch_tokens_of_same_length).to(device)
|
|
|
|
|
|
|
|
|
|
outputs = self.wrapped.transformer(input_ids=tokens, position_ids=position_ids, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
|
|
|
|
if opts.CLIP_stop_at_last_layers > 1:
|
|
|
|
|
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
|
|
|
|
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
|
|
|
|
@ -290,7 +313,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|
|
|
|
z = outputs.last_hidden_state
|
|
|
|
|
|
|
|
|
|
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
|
|
|
|
batch_multipliers_of_same_length = [x + [1.0] * (target_token_count - len(x)) for x in batch_multipliers]
|
|
|
|
|
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
|
|
|
|
|
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device)
|
|
|
|
|
original_mean = z.mean()
|
|
|
|
|
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
|
|
|
|
|