|
|
|
|
@ -8,7 +8,8 @@ from torch import einsum
|
|
|
|
|
from ldm.util import default
|
|
|
|
|
from einops import rearrange
|
|
|
|
|
|
|
|
|
|
from modules import shared
|
|
|
|
|
from modules import shared, hypernetwork
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
|
|
|
|
try:
|
|
|
|
|
@ -26,16 +27,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
|
|
|
|
q_in = self.to_q(x)
|
|
|
|
|
context = default(context, x)
|
|
|
|
|
|
|
|
|
|
hypernetwork = shared.loaded_hypernetwork
|
|
|
|
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
|
|
|
|
|
|
|
|
|
if hypernetwork_layers is not None:
|
|
|
|
|
k_in = self.to_k(hypernetwork_layers[0](context))
|
|
|
|
|
v_in = self.to_v(hypernetwork_layers[1](context))
|
|
|
|
|
else:
|
|
|
|
|
k_in = self.to_k(context)
|
|
|
|
|
v_in = self.to_v(context)
|
|
|
|
|
del context, x
|
|
|
|
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
|
|
|
|
k_in = self.to_k(context_k)
|
|
|
|
|
v_in = self.to_v(context_v)
|
|
|
|
|
del context, context_k, context_v, x
|
|
|
|
|
|
|
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
|
|
|
|
del q_in, k_in, v_in
|
|
|
|
|
@ -59,22 +54,16 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
|
|
|
|
return self.to_out(r2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# taken from https://github.com/Doggettx/stable-diffusion
|
|
|
|
|
# taken from https://github.com/Doggettx/stable-diffusion and modified
|
|
|
|
|
def split_cross_attention_forward(self, x, context=None, mask=None):
|
|
|
|
|
h = self.heads
|
|
|
|
|
|
|
|
|
|
q_in = self.to_q(x)
|
|
|
|
|
context = default(context, x)
|
|
|
|
|
|
|
|
|
|
hypernetwork = shared.loaded_hypernetwork
|
|
|
|
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
|
|
|
|
|
|
|
|
|
if hypernetwork_layers is not None:
|
|
|
|
|
k_in = self.to_k(hypernetwork_layers[0](context))
|
|
|
|
|
v_in = self.to_v(hypernetwork_layers[1](context))
|
|
|
|
|
else:
|
|
|
|
|
k_in = self.to_k(context)
|
|
|
|
|
v_in = self.to_v(context)
|
|
|
|
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
|
|
|
|
k_in = self.to_k(context_k)
|
|
|
|
|
v_in = self.to_v(context_v)
|
|
|
|
|
|
|
|
|
|
k_in *= self.scale
|
|
|
|
|
|
|
|
|
|
@ -130,14 +119,11 @@ def xformers_attention_forward(self, x, context=None, mask=None):
|
|
|
|
|
h = self.heads
|
|
|
|
|
q_in = self.to_q(x)
|
|
|
|
|
context = default(context, x)
|
|
|
|
|
hypernetwork = shared.loaded_hypernetwork
|
|
|
|
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
|
|
|
|
if hypernetwork_layers is not None:
|
|
|
|
|
k_in = self.to_k(hypernetwork_layers[0](context))
|
|
|
|
|
v_in = self.to_v(hypernetwork_layers[1](context))
|
|
|
|
|
else:
|
|
|
|
|
k_in = self.to_k(context)
|
|
|
|
|
v_in = self.to_v(context)
|
|
|
|
|
|
|
|
|
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
|
|
|
|
k_in = self.to_k(context_k)
|
|
|
|
|
v_in = self.to_v(context_v)
|
|
|
|
|
|
|
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
|
|
|
|
del q_in, k_in, v_in
|
|
|
|
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
|
|
|
|
|