|
|
|
|
@ -138,7 +138,7 @@ class VanillaStableDiffusionSampler:
|
|
|
|
|
if self.stop_at is not None and self.step > self.stop_at:
|
|
|
|
|
raise InterruptedException
|
|
|
|
|
|
|
|
|
|
# Have to unwrap the inpainting conditioning here to perform pre-preocessing
|
|
|
|
|
# Have to unwrap the inpainting conditioning here to perform pre-processing
|
|
|
|
|
image_conditioning = None
|
|
|
|
|
if isinstance(cond, dict):
|
|
|
|
|
image_conditioning = cond["c_concat"][0]
|
|
|
|
|
@ -146,7 +146,7 @@ class VanillaStableDiffusionSampler:
|
|
|
|
|
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
|
|
|
|
|
|
|
|
|
|
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
|
|
|
|
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
|
|
|
|
|
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
|
|
|
|
|
|
|
|
|
|
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
|
|
|
|
|
cond = tensor
|
|
|
|
|
@ -165,6 +165,8 @@ class VanillaStableDiffusionSampler:
|
|
|
|
|
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
|
|
|
|
x_dec = img_orig * self.mask + self.nmask * x_dec
|
|
|
|
|
|
|
|
|
|
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
|
|
|
|
|
# Note that they need to be lists because it just concatenates them later.
|
|
|
|
|
if image_conditioning is not None:
|
|
|
|
|
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
|
|
|
|
|
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
|
|
|
|
|