fixes related to merge
parent
5de806184f
commit
530103b586
@ -1,103 +0,0 @@
|
||||
import glob
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import torch
|
||||
|
||||
from ldm.util import default
|
||||
from modules import devices, shared
|
||||
import torch
|
||||
from torch import einsum
|
||||
from einops import rearrange, repeat
|
||||
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
def __init__(self, dim, state_dict):
|
||||
super().__init__()
|
||||
|
||||
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
||||
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
||||
|
||||
self.load_state_dict(state_dict, strict=True)
|
||||
self.to(devices.device)
|
||||
|
||||
def forward(self, x):
|
||||
return x + (self.linear2(self.linear1(x)))
|
||||
|
||||
|
||||
class Hypernetwork:
|
||||
filename = None
|
||||
name = None
|
||||
|
||||
def __init__(self, filename):
|
||||
self.filename = filename
|
||||
self.name = os.path.splitext(os.path.basename(filename))[0]
|
||||
self.layers = {}
|
||||
|
||||
state_dict = torch.load(filename, map_location='cpu')
|
||||
for size, sd in state_dict.items():
|
||||
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
||||
|
||||
|
||||
def list_hypernetworks(path):
|
||||
res = {}
|
||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
res[name] = filename
|
||||
return res
|
||||
|
||||
|
||||
def load_hypernetwork(filename):
|
||||
path = shared.hypernetworks.get(filename, None)
|
||||
if path is not None:
|
||||
print(f"Loading hypernetwork {filename}")
|
||||
try:
|
||||
shared.loaded_hypernetwork = Hypernetwork(path)
|
||||
except Exception:
|
||||
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
if shared.loaded_hypernetwork is not None:
|
||||
print(f"Unloading hypernetwork")
|
||||
|
||||
shared.loaded_hypernetwork = None
|
||||
|
||||
|
||||
def apply_hypernetwork(hypernetwork, context):
|
||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||
|
||||
if hypernetwork_layers is None:
|
||||
return context, context
|
||||
|
||||
context_k = hypernetwork_layers[0](context)
|
||||
context_v = hypernetwork_layers[1](context)
|
||||
return context_k, context_v
|
||||
|
||||
|
||||
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||
k = self.to_k(context_k)
|
||||
v = self.to_v(context_v)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
if mask is not None:
|
||||
mask = rearrange(mask, 'b ... -> b (...)')
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
attn = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(out)
|
||||
Loading…
Reference in New Issue