@ -1,6 +1,6 @@
import re
from collections import namedtuple
from typing import List
import lark
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
@ -175,14 +175,14 @@ def get_multicond_prompt_list(prompts):
class ComposableScheduledPromptConditioning :
def __init__ ( self , schedules , weight = 1.0 ) :
self . schedules : l ist[ ScheduledPromptConditioning ] = schedules
self . schedules : L ist[ ScheduledPromptConditioning ] = schedules
self . weight : float = weight
class MulticondLearnedConditioning :
def __init__ ( self , shape , batch ) :
self . shape : tuple = shape # the shape field is needed to send this object to DDIM/PLMS
self . batch : list [ l ist[ ComposableScheduledPromptConditioning ] ] = batch
self . batch : List [ L ist[ ComposableScheduledPromptConditioning ] ] = batch
def get_multicond_learned_conditioning ( model , prompts , steps ) - > MulticondLearnedConditioning :
@ -203,7 +203,7 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne
return MulticondLearnedConditioning ( shape = ( len ( prompts ) , ) , batch = res )
def reconstruct_cond_batch ( c : list [ l ist[ ScheduledPromptConditioning ] ] , current_step ) :
def reconstruct_cond_batch ( c : List [ L ist[ ScheduledPromptConditioning ] ] , current_step ) :
param = c [ 0 ] [ 0 ] . cond
res = torch . zeros ( ( len ( c ) , ) + param . shape , device = param . device , dtype = param . dtype )
for i , cond_schedule in enumerate ( c ) :