|
|
|
|
@ -302,8 +302,8 @@ def create_seed_inputs():
|
|
|
|
|
|
|
|
|
|
with gr.Row(visible=False) as seed_extra_row_2:
|
|
|
|
|
seed_extras.append(seed_extra_row_2)
|
|
|
|
|
seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from width", value=0)
|
|
|
|
|
seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from height", value=0)
|
|
|
|
|
seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0)
|
|
|
|
|
seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0)
|
|
|
|
|
|
|
|
|
|
random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed])
|
|
|
|
|
random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed])
|
|
|
|
|
@ -635,8 +635,8 @@ def create_ui():
|
|
|
|
|
sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index")
|
|
|
|
|
|
|
|
|
|
with gr.Group():
|
|
|
|
|
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
|
|
|
|
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
|
|
|
|
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
|
|
|
|
|
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512)
|
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
|
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
|
|
|
|
|
@ -644,8 +644,8 @@ def create_ui():
|
|
|
|
|
enable_hr = gr.Checkbox(label='Highres. fix', value=False)
|
|
|
|
|
|
|
|
|
|
with gr.Row(visible=False) as hr_options:
|
|
|
|
|
firstphase_width = gr.Slider(minimum=0, maximum=1024, step=64, label="Firstpass width", value=0)
|
|
|
|
|
firstphase_height = gr.Slider(minimum=0, maximum=1024, step=64, label="Firstpass height", value=0)
|
|
|
|
|
firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0)
|
|
|
|
|
firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0)
|
|
|
|
|
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7)
|
|
|
|
|
|
|
|
|
|
with gr.Row(equal_height=True):
|
|
|
|
|
@ -835,8 +835,8 @@ def create_ui():
|
|
|
|
|
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
|
|
|
|
|
|
|
|
|
|
with gr.Group():
|
|
|
|
|
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512, elem_id="img2img_width")
|
|
|
|
|
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="img2img_height")
|
|
|
|
|
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
|
|
|
|
|
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
|
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
|
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
|
|
|
|
|
@ -1171,8 +1171,8 @@ def create_ui():
|
|
|
|
|
with gr.Tab(label="Preprocess images"):
|
|
|
|
|
process_src = gr.Textbox(label='Source directory')
|
|
|
|
|
process_dst = gr.Textbox(label='Destination directory')
|
|
|
|
|
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
|
|
|
|
process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
|
|
|
|
process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
|
|
|
|
|
process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512)
|
|
|
|
|
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"])
|
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
|
@ -1230,8 +1230,8 @@ def create_ui():
|
|
|
|
|
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
|
|
|
|
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
|
|
|
|
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
|
|
|
|
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
|
|
|
|
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
|
|
|
|
training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
|
|
|
|
|
training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512)
|
|
|
|
|
steps = gr.Number(label='Max steps', value=100000, precision=0)
|
|
|
|
|
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
|
|
|
|
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
|
|
|
|
|