do not save config if it's the default for checkpoint merger tab
change file naming scheme for checkpoint merger tab
allow just saving A without any merging for checkpoint merger tab
some stylistic changes for UI in checkpoint merger tab
"Initialization text":"If the number of tokens is more than the number of vectors, some may be skipped.\nLeave the textbox empty to start with zeroed out vectors",
"Learning rate":"How fast should training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
parser.add_argument("--config",type=str,default=os.path.join(script_path,"configs/v1-inference.yaml"),help="path to config which constructs model",)
parser.add_argument("--config",type=str,default=sd_default_config,help="path to config which constructs model",)
parser.add_argument("--ckpt",type=str,default=sd_model_file,help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
parser.add_argument("--ckpt-dir",type=str,default=None,help="Path to directory with stable diffusion checkpoints")
parser.add_argument("--vae-dir",type=str,default=None,help="Path to directory with VAE files")
custom_name=gr.Textbox(label="Custom Name (Optional)",elem_id="modelmerger_custom_name")
interp_amount=gr.Slider(minimum=0.0,maximum=1.0,step=0.05,label='Multiplier (M) - set to 0 to get model A',value=0.3,elem_id="modelmerger_interp_amount")
save_as_half=gr.Checkbox(value=False,label="Save as float16",elem_id="modelmerger_save_as_half")
config_source=gr.Radio(choices=["A, B or C","B","C","Don't"],value="A, B or C",label="Copy config from",type="index",elem_id="modelmerger_config_method")
withFormRow():
withgr.Column():
config_source=gr.Radio(choices=["A, B or C","B","C","Don't"],value="A, B or C",label="Copy config from",type="index",elem_id="modelmerger_config_method")
withgr.Column():
withFormRow():
bake_in_vae=gr.Dropdown(choices=["None"]+list(sd_vae.vae_dict),value="None",label="Bake in VAE",elem_id="modelmerger_bake_in_vae")