|
|
|
|
@ -201,7 +201,7 @@ class StableDiffusionModelHijack:
|
|
|
|
|
def process_file(path, filename):
|
|
|
|
|
name = os.path.splitext(filename)[0]
|
|
|
|
|
|
|
|
|
|
data = torch.load(path)
|
|
|
|
|
data = torch.load(path, map_location="cpu")
|
|
|
|
|
|
|
|
|
|
# textual inversion embeddings
|
|
|
|
|
if 'string_to_param' in data:
|
|
|
|
|
@ -217,7 +217,7 @@ class StableDiffusionModelHijack:
|
|
|
|
|
if len(emb.shape) == 1:
|
|
|
|
|
emb = emb.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
self.word_embeddings[name] = emb.detach()
|
|
|
|
|
self.word_embeddings[name] = emb.detach().to(device)
|
|
|
|
|
self.word_embeddings_checksums[name] = f'{const_hash(emb.reshape(-1)*100)&0xffff:04x}'
|
|
|
|
|
|
|
|
|
|
ids = tokenizer([name], add_special_tokens=False)['input_ids'][0]
|
|
|
|
|
|